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in the atomic calculations. One might expect then 
that, in two molecules which differ only in the sub­
stitution of B for A, the localized orbitals of the rest of 
the molecule containing A could be used to calculate 
the corresponding molecular matrix element with an 
error of the order of magnitude of 5%; i.e., the 50% 
error in the atomic case is weighted by the contributions 
of the A and B atomic core regions to the localized 
orbital. Thus, although atomic transferability as tested 
in this paper is shown not to be an accurate method for 
approximating atomic orbitals, localized orbitals may 
be transferable to a useful accuracy; but that can be 
demonstrated only by direct calculation. 

If one assumes that localized orbitals for some kinds 
of molecules will be transferable to a useful degree of 
accuracy, one is led to consider the physical conse­
quences of the transferability. For example, one 
should consider the possibility that the potential 
surfaces of these molecules may be interrelated except 
for core contributions. To be more specific, if the 
H - orbital is transferable in the case of LiH and NaH, 
one might expect that the potential curves of each at 
identical nuclear separations will differ primarily due 
to the differences between the Li+ and Na+ ions, differ­
ences which should become pronounced only as the 
hydrogen nucleus penetrates into the Li and Na core 
regions. If this is the case, can the corrections be 
introduced without resort to full electronic calculations? 
Clearly these are not the only speculations one can 
make if one assumes that there are transferable localized 
orbitals; but it is also clear that the next step needed is 
molecular transferability calculations, not extensive 
speculations. 

Conclusions 

One general conclusion to be drawn from this study 
is that ab initio Hartree-Fock valence atomic orbitals 

I n the analysis of absorption band shapes of electronic 
transitions thought to be vibronically induced a 

simplifying assumption is often made, namely that the 
intensity distribution with respect to the vibronically 
active mode consists at O0K of but a single line, this 

have properties consistent with the idea of chemical 
periodicity. This is a very interesting result since these 
orbitals contain no adjustable parameters on which one 
might build in the periodicity. The periodicity is a 
consequence of the quantum mechanical equations. 
Some implications of this have been discussed. In 
addition to this general conclusion, the following 
specific conclusions may be drawn from the calcula­
tions. 

The atomic valence-shell Hartree-Fock orbitals of 
congeners are generally about the same size and in 
some cases are nearly identical except in the atomic 
core region. The differences in the core region when 
two valence orbitals are nearly identical outside of the 
core seem to be due primarily to the valence orbitals 
being orthogonal to different core orbitals. The 
accuracy to which the valence-shell orbitals of one 
atom approximate those of another depends upon the 
energies of the valence orbitals of each symmetry 
being nearly equal for the two atoms. This means that 
the valence-shell orbitals of two atoms may be nearly 
identical even though they are not congeners. The use 
of the valence-shell orbitals of one atom as approxima­
tions to the valence-shell orbitals of another atom is not 
justified in the calculation of most energy integrals. 
The Slater two-electron integrals can be approximated 
in this way with errors of less than 10% for transfers of 
valence orbitals from third- to fourth-period congeners 
in columns III through VI. 
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0 -»• 1 transition being in effect a false origin upon which 
are built normal Franck-Condon distributions with re­
spect to the remaining modes, including the totally 
symmetric vibration. At higher temperatures there 
would be two origins, corresponding to Av = ± 1 , where 
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v is the quantum number associated with the vibron­
ically active mode. This simplification assumes that 
this mode is simply a harmonic oscillator with no change 
in either force constant or equilibrium geometry upon 
changing electronic states. We recently noted1 that 
changes in force constant or geometry did not affect 
the temperature dependence of the total vibronically in­
duced oscillator strength/since the familiar form 

f(T) = /(O0K) coth (hvjlkT) (1) 

depends only on assuming a harmonic oscillator of 
frequency v for the initial electronic state. More gen­
erally f(T)/f(0) is completely determined by the form of 
the potential curves in the initial electronic state, this 
state being the ground state in absorption or an excited 
state in emission that is Boltzmann-equilibrated with re­
spect to vibrations. However, the distribution of in­
tensity will depend upon potential curves for both initial 
and final states. This distribution is determined not by 
overlap integrals as with usual Franck-Condon factors 
but instead by matrix elements of the nuclear coordi­
nate x 

MT) = A\{i\x\j)\>Pt(T) (2) 

where / denotes the z'th vibrational level, with a Boltz-
mann population Pi(T), of the initial electronic state, j 
denotes the jth level of the final state, A is a constant 
containing electronic factors, and/y(r) is the oscillator 
strength for the transition /-*-j. It is assumed2 that the 
vibronically induced transition moment is directly pro­
portional to the coordinate x, where x is measured from 
the equilibrium position in the initial state. We desire 
to compute theoretical distributions (band shapes) in 
order to see if there are features that might serve to in­
dicate the presence of vibronically induced transitions 
in an experimental spectrum. 

Method 

In order to calculate the intensities of the individual 
lines, eq 2, and the corresponding shapes it is necessary 
to know two sets of vibrational energies and wave func­
tions, the sets {Et, t/̂ j and [E1, \ps\ corresponding to the 
potential curves for the vibronically active coordinate 
in the initial and final states, respectively. The method 
chosen was the expansion of each wave function in a 
truncated basis of harmonic oscillator (HO) eigenstates. 
This method is particularly practical when a potential 
function can be expressed as a power series 

V(x) = IXx" 
71 = 0 

(3) 

since matrix elements of such a potential with n < 6 
have been reported3'4 for a HO basis set. In fact this 
method has been used in studies of asymmetric potentials 
for hydrogen bonds5 and of ring deformations in 
bromocyclobutane and related compounds.6 We ex­
pand both the sets {**} and \\pj} in the same basis {$„} 

(1) L. L. Lohr, Jr., J. Chem. Phys., 50, 4596 (1969). 
(2) A. C. Albrecht, ibid., 33, 156 (1960); also see footnote 5 of ref 1. 
(3) E. Heilbronner, Hs. H. Gunthard, and R. Gerdil, HeIv. Chim. 

Acta, 39, 1171 (1956). 
(4) For a correction to one of the matrix elements in ref 3, see T. Ueda 

and T. Shimanouchi, J. Chem. Phys., 47, 4042 (1967). 
(5) R. L. Somorjai and D. F. Hornig, ibid., 36, 1980 (1962). 
(6) W. G. Rothschild, ibid., 45, 1214 (1966). 

^ i ~ 11Cvi<l>v 
» = 0 

V my 

» = 0 

(4) 

where v is the usual HO quantum number, and the 
chosen number m of HO basis functions is vmSLK + 1. 

The eigenvectors C and dimensionless eigenvalues 
Ei are obtained by diagonalizing an mxm matrix 
corresponding to the dimensionless Schrodinger equa­
tion6 

- ^ r + ( W W = (VOi?'* 

which is obtained from 

-ft2d2^ 

(5) 

(6) 

by the substitutions5 V = (A/8/4) F", E = (h(3/4)E', and 
x = (hjM^f)l/% where /3 is an arbitrary circular fre­
quency, M is the reduced mass, and £ is a dimensionless 
coordinate. Corresponding to eq 3 

where 

V(O = (*/3/2)E6,r 

bn = (2/h/3)(hlMp)n»Bn 

(7) 

(8) 

so that V(O is simply 2 2 Af*. Thus the HO defined by 
bi = 1, giving V(O = 2£2, has energy spacings of four 
units of ft/8/4 and a zero-point energy (ZPE) of two 
units. After the matrix diagonalization the eigenvalues 
are for convenience divided by 2 so that they are in 
units of ft/3/2 rather than ft/3/4. Then the ZPE for the 
basis oscillator becomes one unit of A/3/2 . AU ther­
mal energies are expressed in this same unit, so that T 
= 2 means that kT = two units of ft/3/2, or that kT/h 
equals the fundamental frequency /3 of the basis set. 
The eigenvectors corresponding to this HO serve as 
basis functions for all other potential energy choices, 
with each choice defined by a set {bn} with n < 6. 

A computer program was written to set up and di-
agonalize the matrices corresponding to the potential 
curves for initial and final electronic states. The nec­
essary kinetic energy matrix elements were also avail­
able3 for our basis set. Then based on eq 4, the pro­
gram calculates the overlap integrals 

(i\j) = EC..C,, 
v = 0 

(9) 

and the transition moments 

(i\Z\j) = 2 > | * | P - 1 > [ C „ C _ I , , + C 1 1 1 C J (10) 
1> = 1 

where <r|f|c-l> = (tf/2)'/1. 
A dimensionless energy distribution function F(E',T) 

can be characterized in terms of spectral semiinvari-
ents7'8 Afc(r), defined for our discontinuous distribution 
as follows 

A1(T) = F = !"£/„ '(T)AE^lIf(T) (Ha) 

(7) R. Kubo and Y. Toyosawa, Progr. Theor. Phys. (Kyoto), 13, 
160 (1955). 

(8) N. S. Hush, Progr. Inorg. Chem., 8, 391 (1967). 
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while for k ^ 1 

Ak(T) = (E' - E'f = 

{Zfi/in^i/ ~ Mf]/f'(T) ( l ib) 

where ftj'(T) corresponds to eq 2, but with £ replacing x, 
AEf/ s=E/ - E/, and f'(T) = V(Uj)U(T). By 
contrast, A* corresponding to a Franck-Condon dis­
tribution would have ftl '(T) factors obtained from ma­
trix elements in eq 9 rather than eq 10, while the de­
nominator in eq 11 would be temperature independent 
and equal to unity. The program is written to com­
pute Ak for k = 1-6, both for allowed and forbidden 
(vibronically allowed) electronic transitions. 

Note that the A4's differ from moments nk defined by 

K == (E7? = £ / « ' (T)(AE tj 'f If (T) (12) 

For example, A1 = ^1, but A2 = û2 — Mi2- The two 
types of quantities are identical if /xi = 0, but since ^i 
(or Ai) is in general a function of T, it is better to describe 
a band shape in terms of the semiinvarients Ak rather 
than /Xk- We shall use the term "moments" in the remain­
der of this paper to mean the quantities A*. Now Ai is the 
mean transition energy, which is simply the vibrational 
energy change if the electronic energy difference is arbi­
trarily chosen to be zero. The second moment, A2, is 
related to the band width, and for a gaussian distribu­
tion gives the half-width at half-height by AEi/, = (2 
In 2)'/!A2

1/!. The third moment A3 is related to the 
band a symmetry (skewness), while A4 yields the kurtosis, 
(A4/A2

2) — 3, which measures the intensity in the wings 
relative to that in a gaussian distribution.9 

To illustrate these As's consider several simple ex­
amples. Suppose F(E) = 1 for - V2 < E < V2, with 
F(E) = 0 otherwise. Then A* = /**, A2 = V12, A4 = 
Vso. and A6 = '/4«, with all odd A* = 0. By contrast, 
a gaussian distribution F(Is) = (a/7r)'A exp( — ccE2), 
again with A* = y.k and all odd A* = 0, yields A2 = 
(2a)-1, A4 = (3/4a»), and A6 = (15/8a3). Here A4 = 
3A2

2, while for the square distribution (first example) 
A4 = (Vs)A2

2, so that the latter has a negative kurtosis. 
A distribution with a positive kurtosis is F(E) = (a/2)-
exp( — a\E\), which yields Ak = fxk = k\/ak for even k, 
A* = 0 for odd k, and A4 = 6A2

2. 
Odd moments are illustrated by the normalized right-

triangular distribution F(E) = 2(1 - E) for 0 < E < 
1, with F(E) = 0 otherwise. Here Ak ^ \xk for k > 1, 
M* = 2/(k + I)(A; + 2), Ai = V3, A2 = Vis, A3 = Vm, 
A4 = V135, and A5 = 4/noi, so that A4 = (12/6)A2

2. 
A final detail of the method is that the partition func­

tions Q needed for the Boltzmann populations are ob­
tained by a summation over the finite number of vibra­
tional eigenstates, the same as the number of basis func­
tions. When both initial and final states are HO's with 
b2 = 1 this is the only source of error, since the basis 
functions are eigenstates. At T = four units of A/3/2, 
Q for this case is calculated to be 2.54137, 2.54148, and 
2.54148 with 20, 30, and 40 basis functions, respectively. 
Since the exact value is 2.54149,30 functions are adequate 
for T < 4. For other potentials, including HO's that 
are displaced (bi = 0) or that have b2 = 1, there is addi­
tional error due to the fact that eigenstates are not used, 

(9) See, for example, R. von Mises, "Mathematical Theory of Proba­
bility and Statistics," Academic Press, New York, N. Y., 1964, pp 112— 
154. 

but instead a limited basis set approximation. Again 
by comparing results obtained with 20, 30, and 40 basis 
functions, we concluded that 30 functions were generally 
adequate for describing the states of most reasonable 
potentials provided that T is only a few energy units.10 

Results 

A. Variation in Force Constant 

While a large variety of hypothetical potential curves 
can easily be considered with our method, it seemed de­
sirable to concentrate on simple types having features in 
common with real molecules. Vibrations which induce 
electronic transitions change the symmetry of a mole­
cule11 and are frequently even functions of the displace­
ment coordinate, thus eliminating all odd terms in eq 
7. Examples would be the bend and antisymmetric 
stretch of a centrosymmetric linear triatomic. Thus 
these modes would not display the type of anharmon-
icity in the dissociative symmetric stretch, making the 
use of a short power-series expansion in eq 7 highly at­
tractive. A reasonable model is the assumption of 
harmonic oscillators for both initial and final states. 
Considering first the case with no change in equilibrium 
geometry along the vibronically active coordinate, we 
present results in Figures 1-6 describing band shapes 
for vibronically induced transitions as a function of 
temperature and of the final-state force constant. In 
every case similar results for allowed transitions are 
added for comparison. The initial state HO has b2 = 
1 so that the basis states are its eigenstates, while the 
final state has one of the indicated b2 values. The 
ratios of the final-state frequencies to the intial-state 
frequency are 2'/«/2, 3v,/2, 1, 51/2/2, and 6l/,/2 for b2 

= 0.50, 0.75, 1.00, 1.25, and 1.50, respectively. Tem­
peratures (T)12 are in energy units of h]3/2. The results 
in Figures 1-6 were all obtained using 30 HO basis func­
tions for the expansions in eq 4. 

Figure 1 displays computed spectral moments Ai, as 
defined by eq 11. In (a) we note that the thermal shift 
of the mean energy Ai is considerably greater for the 
vibronically induced transition than for the allowed 
transition (b). Also in (a) the slope dAi/dr is non-
vanishing at T = 0 for all b2, with the sign of the slope 
changing from negative to positive at about T = 1.5 for 
b2 = 1.50. Thus, when the final state has the higher 
vibrational frequency, the thermal shift of the mean en­
ergy changes from a red shift to a blue shift at some 
value of T. In the allowed case the slope dAi/dT ap­
proaches zero as T approaches zero for all b2. 

Figure 2 shows values of A2 which are quadratic in 
energy. These results depend only on the magnitude of 
the change in force constant (related to b2), but not on 
the sign, for the curves for b2 = 1.50 and 0.50 are iden-

(10) For a discussion of choices of basis sets for one-dimensional 
potentials, see A. M. Lesk, J. Chem. Phys., 49, 3898 (1968). 

(11) More specifically it is the symmetry of the fixed-nuclei electronic 
Hamiltonian which is changed. Interestingly it is possible for totally 
symmetric vibrations to induce electronic transitions, provided that the 
electronic transition moment is very small at the initial-state equilibrium 
geometry but becomes significantly larger for moderate displacements. 

(12) For molecules with light atoms T is less than one energy unit 
unless the temperature is significantly greater than room temperature, 
so that most of the following results for T > 1 will seldom be encountered 
in experimental spectra. However, for metal ions in crystals, striking 
thermal effects on intensities are observed at room temperature and 
below. A good example is the UCU2- complex, where the vibronically 
active coordinate has a frequency of approximately 90 cm - 1 so that T at 
room temperature is about four energy units: R. A. Satten and E. Y. 
Wong, ibid., 43, 3025 (1965). 
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b2=0.50or 1.50 

0 1 2 3 4 

1 2 3 4 
T (Tl/3/2) 

Figure 1. Spectral moments Ai in units of #/3/2 vs. temperature in 
energy units #/3/2 for (a) a vibronically induced transition and (b) 
an allowed transition between harmonic oscillators (HO's) with 
differing force constants. In each case the initial state potential is 
given by bi = 1.0 (see eq 7), while the final state values of bt are 
the labels for the curves. Circled points here and in Figures 
2-4 denote the calculated values. 

tical in both the vibronically induced and allowed cases. 
The linear variation in A2 vs. T at small T in (a) indicates 
that the width of a vibronically induced band increases 
as r1/!, a result pointed out7 by Kubo and Toyosawa. 

An interesting moment is A3 (Figure 3), since it is a 
signed quantity. The differences between the vibron­
ically induced and the allowed (b) cases do not appear 
to be great, except again for the nonvanishing of the 
slope in (a) for T=O. It is interesting that the curves 
in (a) for b2 = 1.50 and b2 = 0.50 are nearly identical 
out to T = 2, where they begin to diverge very rapidly. 
This behavior is perhaps better illustrated by Figures 
5 and 6, to be described later. 

The moments A5 and A6 were computed but not 
plotted, while the A4 is shown in Figure 4. The differ­
ences between the curves in (a) and those in (b) are 
mostly quantitative, the shapes being nearly identical. 
Even the quantitative differences are somewhat mis­
leading, for A4 is quartic in energy, exaggerating what 
would be small differences in the fourth roots which are 
linear in energy. 

The spectral distributions represented by these mo­
ments are far from smooth, meaning that an accurate 
representation would require a very large number of 
moments. As an alternative method of display, Fig­
ures 5 and 6 show bar-graph idealizations of the same 

<i. 3 

0 5 0 or 1.50 

Figure 2. Plots of A2 in units of (#/3/2)2 vs. temperature for (a) a 
vibronically induced transition and (b) an allowed transition be­
tween HO's with differing force constants. See legend Figure 1. 

IJ2 = I .50 

b2 =150 

Figure 3. Plots of A3 in units of (#/3/2)3 vs. temperature for (a) 
a vibronically induced transition and (b) an allowed transition 
between HO's with differing force constants. See legend of 
Figure 1. 

computed spectra. Here each AE interval of A/3 is 
assigned the intensity for any vibronically induced tran­
sition (solid lines) or allowed transition (dashed lines) 
whose energy falls within that AE interval. The initial-
state spacings are also A/3, but the AE intervals are dis­
placed by A/3/2, so that a 0 -»• 1 transition with no change 
in force constant occurs at two units of A/3/2, which is at 
the center of the bar that ranges from AE = one unit to 
AE = three units of A/3/2. If by chance AE equals the 
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Figure 4. Plots of A4 in units of (#/3/2)4 vs. temperature for (a) a 
vibronically induced transition and (b) an allowed transition be­
tween HO's with differing force constants. See legend of Figure 1. 
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Figure 5. Bar graph representations of band shapes for vibronic­
ally induced transitions (solid lines) and allowed transitions (dashed 
lines) from an initial HO with b = 1.00 to a final HO with A2 = 
0.50, at temperatures of (a) 0, (b) 2, and (c) 4 energy units of #/3/2. 
The total band intensity, given by the sum of the heights of the bars, 
is unity in the allowed case, and coth (1/7") in the vibronically in­
duced case, where T is in energy units. Each AE interval of hfl 
is assigned the intensity for any transition whose energy falls within 
that interval. 

dividing value (any odd multiple of A/3/2), the corre­
sponding intensity is arbitrarily assigned to the 
higher interval. In practice this situation has not 
arisen. Total band intensities are given by the sum of 
of the heights of the bars, this sum always being unity in 
the allowed case, but is coth (1/7") in the vibronically in­
duced case, satisfying eq 1, with T again in energy units 

> i.o|-
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Figure 6. Bar graphs as in Figure 5, but for transitions from an 
initial HO with A2 = 1.00 to a final HO with A2 = 1.50, at tempera­
tures of (a) 0, (b) 2, and (c) 4 energy units of #/3/2. 

of h/3/2. Thus the vibronic intensity is 1.000, 2.164, and 
4.083 at T = 0, 2, and 4, respectively. The actual sum 
of the /^ of eq 2 is 0.5 at T = 0 for an HO with b2 = 1, 
so all vibronically induced intensities have been doubled, 
yielding 1.0 in this case. 

Figure 5 displays these results for b2 = 0.50, meaning 
that the final-state force constant is less than the initial-
state force constant. While there is in principle a dis­
tribution at T = 0 (a) of either the vibronically induced 
intensity (0 -*• 1, 0 ->- 3, 0 -»• 5, etc.) or the allowed in­
tensity (0 -*• 0, 0 -+• 2, 0 -*• 4, etc.), nearly all of the in­
tensity is in a single line even when the final b2 is only 
one-half of the initial b2. The greatly broadened dis­
tributions at T = 2 (b) and T = 4 (c) result primarily 
from the noncoincidence of the A£"s for different v's of 
the transitions Av = ± 1 in the vibronically induced case 
or of the transitions Av = 0 in the allowed case. 

Figure 6 displays similar results but for b2 = 1.50 (in­
crease in force constant upon excitation). Here the 
vibronically induced distribution shifts toward the blue 
with rising T, in contrast to Figure 5, where the shift is 
to the red. Specifically, the vibronic intensity in the 
bar centered at AE = 2 at T = 0 is the 0 -*- 1 transition 
at 2.6742 units, while that in the bar centered at AE = 
8 is the 0 -*• 3 transition at 7.5732 units. At T = 2 there 
appear the transitions 1 -»• 0 at —1.7752, centered at 
— 2, 1 -»• 2 at 3.1238, centered at four units, plus nu­
merous other weak transitions such as 1 -»• 4, 2 -*• 1, 
2 -*• 3, 2 -»• 5, etc. One observation is that the asym­
metries in the vibronically induced distributions at T = 
2, Figures 5b and 6b, are not greatly different, so that the 
similarity in the A3 values, Figure 3a, should not be 
surprising, especially since A3 is defined relative to 
A1. That is, A3 is the mean-cube deviation from the 
mean. At T = 4, however, the asymmetries in Figures 
5c and 6c appear qualitatively different, consistent with 
the previously noted divergence in Figure 3a for b2 = 
0.50 and 1.50. 
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Figure 7. Bar graphs as in Figure 5, but for V (initial) = £2 and 
V (final) = ({ - Vz)2, so that K' (final) has bo = lbU, *i = - 5 , 
and i>2 = 1. Only vibronically induced intensity is shown, at 
temperatures of (a) 0, (b) 2, and (c) 4 energy units of #j3/2. The 
energy scale is displaced (see text) by "/4 energy units. 

B. Variation in Equilibrium Geometry 

While molecules will not usually have geometry 
changes along vibronically active coordinates, as op­
posed to other coordinates, such a situation is by no 
means impossible. Thus we calculated A* values as a 
function of T for transitions between HO's with the 
same frequency (Jb2 = 1 for both), but with different 
equilibrium positions. These positions are determined 
by the size of the coefficient by in eq 7, with the minimum 
occurring, for b2 = 1, at £0 = — bJ2, so that V(Zo) = 0 
if bo = by 2/4 is added to the potential. The vertical en­
ergy difference measured from one of the minima is also 
V / 4 energy units. By comparison the ZPE is one en­
ergy unit, with a root-mean-square (rms) displacement 
Of Inns = 2-'/ ' . 

Calculations were made with b2 = 1 for both initial 
and final states, but with the final state having by = 
- 0 . 1 , - 1 .0 , - 5 . 0 , or -10.0, and b0 - bf/4. The 
zero value of by in the initial state is consistent with the 
assumption of an electronic transition moment pro­
portional to x. We thus avoided introducing a con­
stant term in the effective operator to compensate for an 
apparent origin dependence of the vibronic intensity, as 
occurs, for example, if the initial and final potentials had 
linear terms of ±by/2, respectively. Results were ob­
tained using either 20, 30, or 40 basis functions, although 
30 functions appear to be adequate unless \by\ is greater 
than 5. For example, the interval between p = 10 
and v = 9 is computed with 30 functions to be 2.00066 
energy units when bi = — 5, but 3.41245 units when by 
= —10. In both cases the exact value is two units. 

Figure 7 shows bar-graph representations of the vi­
bronically induced spectra for by = —5 with 30 basis 
functions. The energy scale is relative to the vertical 
energy difference of 25/4 energy units at the initial state 
minimum. Since the transition is induced, there is no 
intensity in the vertical transition bar, for which AE 
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Figure 8. Potential energy curves and lowest few energy levels 
using 30 basis functions for (a) a double-minimum well and (b) a 
HO with bi = 1. The curves are a function of the dimensionless 
coordinate £ as in eq 7, while the integers to the right of the curve 
are level indices v. In (a), the 0,1 separation is 0.00015, the 2,3 
separation is 0.000731, and the 4,5 separation is 0.26344 energy 
unit, all levels with even or odd v corresponding to even or odd 
parity, respectively. 

equals 2V4. By contrast, an allowed transition (not 
shown) has a usual Franck-Condon distribution, with 
a maximum in the vicinity of the vertical transition. 
The moments A* for the vibronically induced case are 
not plotted but have the following characteristics: 
(a) Ai shows a thermal red shift AAy/AT which is inde­
pendent of by, and hence equal to that in Figure la for 
b = 1.00; (b) A2 increases very rapidly with T only for 
small \bi\, say < 1 ; (c) A3 exhibits a minimum at some 
T 7* 0 (A3 for the corresponding allowed transition is in­
dependent of Zand equal to by2); and (d) A4 is moderate 
in size, equaling about 3A2

2 or less. 
A different example illustrating geometry change 

along a vibronically active coordinate is given by a HO 
initial state, shown in Figure 8b with its lowest few en­
ergy levels, and a final state having the potential in Fig­
ure 8a, also shown with its lowest few levels. The dis­
tribution of the vibronically induced intensity is shown 
in Figure 9, as obtained using 30 basis functions. The 
spectral moments (not shown) tend to be very large, 
with A4 at T = four energy units equaling 9.201 X 107, 
which has a fourth root of 97.94 energy units. As the 
asymmetry in Figure 8 suggests, the third moment is 
positive, being 10.31, 1.126 X 103, and 2.023 X 105 at 
T = 0, 2, and 4 units, respectively. 

An interesting situation occurs if the potentials of 
Figure 8 are reversed, taking the double-minimum curve 
for the initial state. While a vibronically induced spec­
trum can be calculated using a displacement coordinate 
measured from one of the minima at £ = ±61/ j, we as­
sumed instead that the electronic transition moment was 
proportional to £ (or x). Either way eq 1 is not satis­
fied, but more interesting the chosen way contains both 
allowed and vibronically induced character in terms of a 
coordinate measured from a minimum. The total in­
tensity decreases slightly with rising temperature, with 

Lohr j Band Shapes for Vibronically Induced Electronic Transitions 
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/ = 11.390, 11.324, and 10.954 at T = 0, 2, and 4, re­
spectively. The bar graphs in Figure IO show that the 
distribution tends toward a Gaussian form with rising 
T, but that there remains considerable intensity in the 
wings at T = 4, where A4/A2

2 = 1826.4/(14.64)2 = 8.5, 
significantly larger than the gaussian ratio of three. 
This example is, except for the lack of vibrational de­
generacy, like an allowed transition from a bent state of 
a triatomic molecule to a state with a linear equilibrium 
structure, with the symmetry condition that the elec­
tronic transition moment vanishes for a linear configura­
tion, so that the electronic moment varies with the bond 
angle. Figure 9 represents a forbidden transition from 
a linear state to a bent state, with the intensity induced 
by the bending vibration, again with its degeneracy 
ignored. 

Summary 

The intensity distributions associated with vibron­
ically induced electronic transitions are found to differ 
from those for allowed transitions in several ways other 
than the familiar temperature dependence of the total 
intensity. For transitions between HO's with differing 
force constants, the spectral moments A* and their tem­
perature variation, particularly for k = 1,2, and 3, may 
offer clues as to the presence of a vibronic intensity 
mechanism. If the equilibrium geometry changes along 
the vibronically active coordinate the distributions are 
particularly interesting. For a transition between 
HO's of the same frequency but different equilibrium 
position the distribution is characterized by two max­
ima, with an intensity minimum in the vicinity of the 
vertical energy difference, in sharp contrast to a Franck-
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Figure 10. Bar graphs as in Figure 5, but for V (initial) = — 6|2 

+ (1ADS4 and V (final) = £2. Only vibronically induced intensity 
is shown at temperatures of (a) 0, (b) 2, and (c) 4 energy units of 
«0/2. 

Condon distribution. A transition from a HO to a 
double-minimum well displays a very broad asymmetric 
distribution, while a transition from a double-minimum 
well to a HO has a nearly gaussian distribution at large 
T. In this latter case the assumption of an electronic 
transition moment proportional to x implies an intensity 
with both allowed and induced character in terms of a 
coordinate x', measured from a minimum. 

A difficulty in applying these results to experimental 
spectra is the complication of other vibrational modes 
along which there will be normal Franck-Condon dis­
tributions. The observed spectrum is a superposition 
of these distributions, with an energy scale which repre­
sents the total change in vibrational energy (plus an 
electronic energy as a trace). In a future communica­
tion we plan to present theoretical distributions which 
have been summed over all the modes present in small 
polyatomic molecules. While the observation of two 
maxima in a spectrum is usually interpreted as evidence 
for two separate electronic transitions, our results sug­
gest the possible alternative of a single vibronically in­
duced transition with a change in equilibrium geometry 
along the vibronically active coordinate. 
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